Exercise 1.1. First steps with categories

- (a) Write down the category for your favorite subject of mathematics or computer science: What are its objects, what are its morphisms? What are its initial and terminal objects?
- (b) Write down a formal definition of the category on the right: What precisely are the objects and the morphisms? What is the composition rule?
- (c) Prove: Identity morphisms in categories are unique. More precisely, verify that if id_X and id_X are both identity morphisms for some object X in a category C, then $id_X = id_X$.

Exercise 1.2. Initial and terminal objects

Determine the initial and terminal objects (in case they exist) of ...

- (a) the category $Vect(\mathbb{R})$
- (b) the numerical category
- (c) the category of Pokémon
- (d) the category of Exercise 1.1(b)

Exercise 1.3. Groups as categories

Explain how out of any group G (or even just a monoid) a category can be constructed, in such a way that the composition rule of G plays a role.

 Remark . The resulting category is sometimes denoted "BG" and arises in algebraic topology.

Exercise 1.4. Uniqueness up to unique isomorphism

An isomorphism $f: X \to Y$ in a category is a morphism for which a morphism $g: Y \to X$ such that $f \circ g = \operatorname{id}_Y$ and $g \circ f = \operatorname{id}_X$ exists. We also write " f^{-1} " for g.

- (a) Prove: The isomorphisms in the category of sets are precisely the bijective maps.
- (b) List two different terminal objects of Set.
- (c) Let T and T' be terminal objects of a category C. Show that there is an isomorphism between T and T', and moreover that there is exactly one such isomorphism.

Definition. A monomorphism in a category \mathcal{C} is a morphism $f: X \to Y$ such that

for all objects Z and all morphisms $p, q: Z \to X$,

if $f \circ p = f \circ q$, then p = q.

Dually, an *epimorphism* is a morphism $f: X \to Y$ such that for all objects Z and all morphisms $p, q: Y \to Z$, if $p \circ f = q \circ f$, then p = q.

Exercise 2.1. Monomorphisms and epimorphisms in the category of sets

Let $f: X \to Y$ be a map between sets. Prove:

- (a) The map f is a monomorphism in Set if and only if it is injective.
- (b) The map f is a epimorphism in Set if and only if it is surjective.

Remark. This exercise is surprisingly deep from the point of view of mathematical logic: Can you give a direct proof avoiding the law of excluded middle, a proof which could be formalized in IZF? Can you even give a proof avoiding the powerset axiom?

Exercise 2.2. Composition of monomorphisms

Let ${\mathcal C}$ be a category.

- (a) Let $f: X \to Y$ and $g: Y \to Z$ be morphisms in \mathcal{C} . Show: If $g \circ f$ is monic, so is f.
- (b) Your proof of (a) works in all categories, hence also in \mathcal{C}^{op} . What does it state then?

Exercise 2.3. Balanced categories

- (a) Prove: The isomorphisms in the category of monoids are precisely what is commonly known as monoid isomorphisms (bijective monoid homomorphisms).
- (b) Prove: Isomorphisms are monic and epic.

Remark. Categories in which the converse holds are called *balanced.* Examples for balanced categories are Set, Grp, $Vect(\mathbb{R})$ and many others; however there are also many categories which are not balanced.

(c) Give an example for a category with morphisms which are monic and epic, but fail to be isomorphisms.

Exercise 2.4. The "2 out of 3" property

(a) Let f be a morphism in a category which has both a left and a right inverse. Prove that f is an isomorphism and that the given one-sided inverses are equal.

Remark. A left inverse to $f: X \to Y$ is a morphism $g: Y \to X$ such that $g \circ f = \mathrm{id}_X$. Dually, a right inverse to f is a morphism $h: Y \to X$ such that $f \circ h = \mathrm{id}_Y$.

(b) Let $f: X \to Y$ and $g: Y \to Z$ be morphisms in a category. Prove that, if two out of the three morphisms f, g and $g \circ f$ are isomorphisms, so is the third.

Exercise 3.1. Product with the terminal object

Let X be an object of a category \mathcal{C} .

(a) Assume that C contains a terminal object 1. Prove:

 $X \times 1 \cong X.$

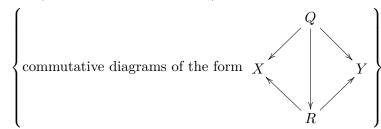
However, this claim is not to be taken literally. Instead, verify more precisely that X (together with which morphisms?) serves as a product of X and 1.

(b) What is the dual statement to (a)?

Exercise 3.2. Category of wannabe products

Let X and Y be objects of a category C. We define the following category of wannabe products of X and Y:

objects: diagrams of the form $X \leftarrow Q \rightarrow Y$ in \mathcal{C} morphisms: $\operatorname{Hom}(X \leftarrow Q \rightarrow Y, X \leftarrow R \rightarrow Y) :=$



- (a) How should the composition rule be defined in this diagram category?
- (b) Explain that a product of X and Y in C is the same as a terminal object in the category of wannabe products of X and Y.
- (c) Which corollary follows from (b) in view of Exercise 1.4?

Exercise 3.3. Infima in preorders

Let X be a *preorder*, that is a set X together with a reflexive and transitive (but not necessarily antisymmetric) binary relation (\preceq) on X. For instance \mathbb{Z} with the divisibility ordering is a preorder.

- (a) Construct a sensible category BX out of X. Why are the category axioms satisfied?
- (b) When are two objects of BX isomorphic?
- (c) An *infimum* of two elements $a, b \in X$ is an element $p \in X$ such that

 $\forall x \in X. \qquad x \preceq a \text{ and } x \preceq b \quad \Longleftrightarrow \quad x \preceq p.$

Show: An infimum of a and b is the same as a product of a and b in BX.

Exercise 4.1. Functors as generalization of group homomorphisms

(a) Explain how a group homomorphism $\varphi : G \to H$ gives rise to a functor $B(\varphi) : BG \to BH$.

Remark. For a group X, the category BX is the category which has a single object \heartsuit and one morphism $g : \heartsuit \to \heartsuit$ for each group element $g \in X$, with id_{\heartsuit} being the neutral element of X and composition given by the operation of the group.

(b) Upgrade your solution of part (a) to a functor $\text{Grp} \rightarrow \text{Cat.}$

Exercise 4.2. Functors between categories induced by preorders

Let X and Y be preorders. Let BX and BY be the induced thin categories of Exercise 3.3. By which data is a functor $BX \rightarrow BY$ given? State and prove an analogue to Exercise 4.1.

Exercise 4.3. Properties of functors

- (a) Study three functors of your choosing as to whether they are full, faithful or essentially surjective.
- (b) Prove that the numerical category is equivalent to its opposite category. *Remark.* The numerical category has as objects the natural numbers, and the set of morphisms from m to n is by definition the set of real $(n \times m)$ -matrices.
- (c) Prove that the functor from the numerical category to the category of finitedimensional real vector spaces, mapping n to \mathbb{R}^n and a matrix to its inducied linear transformation, is fully faithful and essentially surjective.

Exercise 4.4. Functoriality of taking products

Let A be an object of a category C. Assume that we are given, for each object X of C, a product $A \times X$ of A and X. Explain how the incomplete association

 $X\longmapsto A\times X$

can be extended to a well-defined functor $F : \mathcal{C} \to \mathcal{C}$: How should F be defined on morphisms? Why are the functor axioms satisfied?

Exercise 4.5. In preparation of the Yoneda lemma I

Let A be an object of a (locally small) category C. The *contravariant Hom-functor* associated to A is defined by

$$\begin{array}{cccc} \widehat{A} : & \mathcal{C}^{\mathrm{op}} & \longrightarrow & \mathrm{Set} \\ & X & \longmapsto & \mathrm{Hom}_{\mathcal{C}}(X, A) \\ & (f: X \to Y) & \longmapsto & f^{\star}, \end{array}$$

where f^{\star} is the map

$$\begin{array}{rccc} f^{\star} : \operatorname{Hom}_{\mathcal{C}}(X, A) & \longrightarrow & \operatorname{Hom}_{\mathcal{C}}(Y, A) \\ g & \longmapsto & g \circ f. \end{array}$$

Verify that \widehat{A} is indeed a functor.

Exercise 5.1. Non-equivalent categories

- (a) Let $F : \mathcal{C} \to \mathcal{D}$ be an elementary equivalence of categories (fully faithful, essentially surjective). Show that an object X of \mathcal{C} is initial if and only if F(X) is initial in \mathcal{D} .
- (b) Find categorical properties which distinguish all of the following categories:

Set, $\operatorname{Vect}(\mathbb{R})$, Grp, Pok, $\operatorname{Set}^{\operatorname{op}}$.

Remark. The category Set^{op} obtains a more concrete description by realizing that it is equivalent, by the contravariant powerset functor, to the category of *complete atomic Heyting algebras*. The (only) examples of such algebras are powersets. However this remark is not particularly relevant to the exercise.

Exercise 5.2. Length as a natural transformation

Let L be the "underlying functor of the list monad", that is the functor $L : \text{Set} \to \text{Set}$ which maps a set X to the set L(X) of finite lists of elements of X,

$$L(X) = \{ [x_1, x_2, \dots, x_n] \mid n \in \mathbb{N}, x_1, \dots, x_n \in X \},\$$

and a map f to the induced map L(f) given by $L(f)([x_1, \ldots, x_n]) = [f(x_1), \ldots, f(x_n)]$. For each set X, let $\eta_X : L(X) \to \mathbb{N}$, $\mathsf{xs} \mapsto$ (length of xs).

- (a) Show that the maps $(\eta_X)_X$ form a natural transformation $L \Rightarrow K_{\mathbb{N}}$, where $K_{\mathbb{N}}$ is the constant functor on \mathbb{N} .
- (b) Find a natural transformation $L \circ L \Rightarrow L$ and a natural transformation $\mathrm{Id}_{\mathrm{Set}} \Rightarrow L$. *Remark.* Recall that $\mathrm{Id}_{\mathrm{Set}} : \mathrm{Set} \to \mathrm{Set}$ is the identity functor on Set, given by $X \mapsto X$ and $f \mapsto f$.
- (c) What would go wrong with finite sets instead of finite lists?

Exercise 5.3. Examples for natural transformations

- (a) Show: There is just one natural transformation $\eta : \mathrm{Id}_{\mathrm{Set}} \Rightarrow \mathrm{Id}_{\mathrm{Set}}$, namely the family consisting of the maps $\eta_X : X \to X, \ x \mapsto x$. Hint (also for (b)). Consider suitable maps $\{\heartsuit\} \to X$.
- (b) Let D: Set \rightarrow Set be the functor $X \mapsto X \times X$, $f \mapsto f \times f := ((a, b) \mapsto (f(a), f(b)))$. Show: There is just one natural transformation $\omega : \operatorname{Id}_{\operatorname{Set}} \Rightarrow D$, namely

$$\omega_X: X \to X \times X, \ x \mapsto (x, x).$$

- (c) Let $P : \text{Set} \to \text{Set}$ be the (covariant) powerset functor. Show: There is no natural transformation $P \Rightarrow \text{Id}_{\text{Set}}$, but a natural transformation in the other direction.
- (d) Assume that we are given, for each inhabited set X, an element $a_X \in X$. Show: The maps $\tau_X : X \to X$, $x \mapsto a_X$ do not constitute a natural transformation $\mathrm{Id}_{\mathcal{C}} \Rightarrow \mathrm{Id}_{\mathcal{C}}$, where \mathcal{C} is the category of inhabited sets and arbitrary maps.
- (e) Which natural transformations $\mathrm{Id}_{\mathrm{Vect}(\mathbb{R})} \Rightarrow \mathrm{Id}_{\mathrm{Vect}(\mathbb{R})}$ are there?

Exercise 5.4. In preparation of the Yoneda lemma II

Let $\varphi : A \to B$ be a morphism in a (locally small) category \mathcal{C} . Construct a natural transformation $\widehat{A} \Rightarrow \widehat{B}$ between the Hom functors of Exercise 4.5.

Exercise 6.1. Natural transformations between monotone maps

Let $f, g: X \to Y$ be monotone maps between preorders X and Y. Let Bf and Bg be the induced functors between the thin categories BX and BY as in Exercise 4.2. Characterize when there is a natural transformation $Bf \Rightarrow Bg$.

Exercise 6.2. Pseudoinverses of elementary equivalences

Let $F : \mathcal{C} \to \mathcal{D}$ be an elementary equivalence, so a fully faithful essentially surjective functor. Assume that for each object $Y \in \mathcal{D}$, an object $X_Y \in \mathcal{C}$ with $F(X_Y) \cong Y$ is given. Explain how the mapping $Y \mapsto X_Y$ can be extended to a functor $G : \mathcal{D} \to \mathcal{C}$, and show that $G \circ F \cong \mathrm{Id}_C$ and $F \circ G \cong \mathrm{Id}_{\mathcal{D}}$.

Exercise 6.3. Linear orderings and permutations

For a finite set X, let Perm(X) be the set of bijections from X to X and let LinOrd(X) be the set of linear orderings on X (lists $[x_1, \ldots, x_n]$ in which every element of X occurs exactly once). Let S be the category of *species*, that is the subcategory of Set which has as objects the finite sets and as morphisms the bijections.

- (a) Show that for every finite set X, $Perm(X) \cong LinOrd(X)$.
- (b) Explain how Perm and LinOrd can be made into functors $\mathcal{S} \to \text{Set}$.
- (c) Show that there is no natural transformation $\text{Perm} \Rightarrow \text{LinOrd}$ and hence also no natural isomorphism $\text{Perm} \cong \text{LinOrd}$.

Hint. Consider the identity permutation.

Exercise 6.4. Tip already in the diagram

Let $F : \mathcal{I} \to \mathcal{C}$ be an \mathcal{I} -shaped diagram in a category \mathcal{C} . Assume that \mathcal{I} contains a terminal object T. Prove that F has a colimit, namely a certain cocone with tip F(T).

Exercise 6.5. Polynomials and power series

Let K be a field (or just a commutative ring) and let $K[X]_n$ be the vector space of polynomials of degree $\leq n$ with coefficients in K.

- (a) Verify that K[X] can be made into a colimit of the diagram $(K[X]_0 \hookrightarrow K[X]_1 \hookrightarrow K[X]_2 \hookrightarrow \cdots)$, where the morphisms are all the inclusions.
- (b) Verify that the vector space $K[\![X]\!] := \{\sum_{i=0}^{\infty} a_i X^i | a_0, a_1, \ldots \in K\}$ of formal power series can be made into a limit of the diagram $(\cdots \twoheadrightarrow K[X]_2 \twoheadrightarrow K[X]_1 \twoheadrightarrow K[X]_0)$, where the maps truncate the highest coefficients.

Exercise 7.1. Monomorphisms as limits

- (a) Verify that a morphism $f: X \to Y$ in a category is monic if and only if the diagram on the right is a pullback square.
- (b) Let $\eta: F \Rightarrow G$ be a natural transformation between functors $F, G: \mathcal{C} \to \mathcal{D}$. Assume that \mathcal{D} has all fiber products. Prove that η is a monomorphism in $[\mathcal{C}, \mathcal{D}]$ if and only if all components η_X are monomorphisms in \mathcal{D} .

 ${\it Hint.}$ Limits in functor categories are computed objectwise.

Exercise 7.2. The Yoneda lemma

Let \mathcal{C} be a (small) category and let $PSh(\mathcal{C}) := [\mathcal{C}^{op}, Set]$ be its presheaf category. Our goal is to prove the *Yoneda lemma*, stating that there is a bijection

$$\operatorname{Hom}_{\operatorname{PSh}(\mathcal{C})}(\widehat{X}, F) \cong F(X), \tag{(\star)}$$

natural in $X \in Ob(\mathcal{C})$ and $F \in Ob(PSh(\mathcal{C}))$, where \hat{X} is the functor from Exercise 4.5.

(a) Prove that a natural transformation $\eta : \hat{X} \Rightarrow F$ is already uniquely determined by the single value $s := \eta_X(\operatorname{id}_X) \in F(X)$, namely by the relationship

$$\eta_Y(f) = F(f)(s) \tag{(†)}$$

for all objects Y and morphisms $f \in \operatorname{Hom}_{\mathcal{C}}(Y, X)$.

- (b) Show that conversely, every $s \in F(X)$ defines a natural transf. $\eta : \hat{X} \Rightarrow F$ by (†).
- (c) Verify that there is a bijection (\star) for fixed $X \in Ob \mathcal{C}$ and $F \in Ob \widehat{\mathcal{C}}$.
- (d) Domain and codomain of (\star) can be regarded as evaluations of the functors

$$L: \mathcal{C}^{\mathrm{op}} \times \mathrm{PSh}(\mathcal{C}) \longrightarrow \mathrm{Set}, \quad (X, F) \longmapsto \mathrm{Hom}_{\mathrm{PSh}(\mathcal{C})}(X, F)$$
$$R: \mathcal{C}^{\mathrm{op}} \times \mathrm{PSh}(\mathcal{C}) \longrightarrow \mathrm{Set}, \quad (X, F) \longmapsto F(X)$$

at (X, F). Explain how these functors act on morphisms, and prove that they are isomorphic, concluding your proof of Yoneda's lemma. Congratulations!